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ABSTRACT 
This paper describes a novel approach for detecting sub-
sea power cable burial status using Distributed Acoustic 
Sensing (DAS) and machine learning — specifically 
artificial neural networks. Currently, DAS has been used 
predominantly to monitor power cables for faults and 
acoustic disturbances. With advancements in the quality of 
data captured by the AP Sensing DAS system, it is possible 
with feature processing to train a neural network to 
determine the burial status of a cable. This paper will 
explore such a case and the validity of the results from the 
experiment.  
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INTRODUCTION 
Damage to subsea power cables creates significant 
impacts on revenue for the cable owner’s business and for 
those affected by the loss of service. Repairs and cable 
monitoring for fault location can be a timely process 
causing further cost and loss of revenue. Typically, 
Remotely Operated underwater Vehicles (ROVs) are used 
to survey subsea cables. These have a high cost and 
cannot provide continuous monitoring of an entire cable. 
Distributed Acoustic Sensing (DAS) systems provide 
solutions for cable fault monitoring and has been 
successfully used to continuously monitor cables for faults 
and disturbances.   

Developments in data processing and pattern recognition 
systems are happening at an ever-increasing rate. 
Consequently, sophisticated algorithms and artificial 
intelligence have become more accessible and less 
exclusive to the realm of academia and are being taken up 
and used successfully in industry for enhancing output, 
classification and predictive modelling. The DAS produces 
large amounts of valuable data which can be interpreted in 
many different ways, therefore it was logical to use 
advanced data analysis techniques and apply them to the 
DAS data to extract crucial patterns which could provide 
invaluable insight. 

DAS 
Distributed Acoustic Sensors have been used for a large 
number of applications from intrusion detection to cable 
fault and leak detection, as they give measurement of 
acoustic signals without interference from electromagnetic 
radiation. In recent research it has also been shown that 
temperature changes can be measured in a phase-

sensitive optical systems such as the AP Sensing 
Distributed Acoustic Sensor [1]. Current DAS Systems 
have been shown to be effective up to 70km making them 
viable for large scale deployment. 

By exploiting this information, patterns relating to subsea 
cables can be explored in more depth than previously done 
before. 

ARTIFICIAL NEURAL NETWORKS 
Neural networks are at the forefront of current machine 
learning technology.  These are mathematical models 
designed to replicate the learning process of the human 
brain. They are heavily used in the process of identifying 
underlying patterns in data which can then be exploited and 
automated [2]. The basic structure of an Artificial Neural 
Network (ANN) is shown in Fig. 1.  Models contain an input 
layer of nodes (shown on the left) that are features 
extracted from the data.  Each adjacent layer in an ANN is 
fully inter-connected with the nodes in adjacent layers, and 
the strength of each connection is determined by the 
weight, Wxx. Each node has an activation function, f, which 
calculates the output from the node based on the weighted 
sum of the inputs from the connected nodes.  The weights 
are calculated during the model’s training via back 
propagation (minimising the error of the model).  The 
direction of the data flow is shown by the directional arrows.  

 

 
Fig.  1: Structure and data flow of a basic ANN, 
demonstrating the weights (Wxx) and activation 
functions (f). 

The complex structure of these models makes them 
extremely efficient at identifying patterns in data, which can 
then be exploited and automated [4]. 

CABLE REBURIAL  
Subsea cable systems are susceptible to the 
environmental changes such as wave motion, natural 
disasters, and human activities such as anchoring and 
fishing [5]. Burying the cable not only gives stability to its 
physical location but also provides a safer environment 
from various threats. Therefore, it can be critical to know 
the cable burial status. Currently this inspection is carried 
out by ROVs with magnetic or visual sensors, making the 
evaluation of cable status costly in both time and 
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resources, and does not continually monitor the cable [5,6]. 

The DAS measures the strain on the FO cable, a cable 
buried at a depth of >1 m in a subsea environment 
experiences different patterns of strain in comparison to an 
unburied cable lying on top of the seabed in the same 
location. Many different factors, such as the attenuation of 
acoustic signals in ground compared to a liquid (sea-water) 
medium, the suppression of motion of the cable, and 
differences in thermal changes due to the surrounding 
medium, can contribute to this effect. A subsea 
environment, however, is often very quiet, producing audio 
signals close to the noise floor of the system, resulting in 
small signal-to-noise ratios (SNR). Therefore, it is important 
to find methods of isolating these differing environmental 
signals from the system noise. With this, a DAS system can 
then serve as a cost efficient and continuous method of 
monitoring a cable asset. 

DATA COLLECTION 
To show that machine learning techniques can be used to 
predict a subsea cable’s burial status, data was collected 
from a reburial campaign on a subsea cable which reburied 
5 sections of cables that were previously exposed.  Details 
of this are shown in Table 1. An AP Sensing DAS system 
was connected to this cable for measurements, prior to the 
reburial campaign. The DAS system monitored and 
recorded data during and after the reburial, at all five 
locations. This helps to minimise the effects of changing 
environmental noise along the length of the cable and 
isolate the signal differences from the cable reburial. 

Data was collected for an extended period before and after 
the reburial to also allow for averaging of the signal 
temporally.  This helps to negate any spontaneous or 
anomalous signals which are not normally present. Fig. 2 
shows a frequency band energy plot of the reburial 
campaign over the course of approximately eight hours, 
data is discarded at a short time prior/post the reburial to 
factor out the ship transporting and controlling the ROV. 

 

Table 1: Reburial Details.  

 

 
Fig.  2: Frequency band energy plot (4-250 Hz) 

showing the reburial (site 3) process of a subsea 
cable using DAS. 

 

THE MODEL 
When training ANNs, the quality of the input data is one of 
the most critical parts. Due to this, it was imperative that the 
data used for training correctly represented the typical 
signals of both a buried and unburied cable. Therefore, 
from the data acquired during the reburial campaign, 
Reburial 3 and 5 were used as the other reburial processes 
did not fully rebury the cable or minimal reburial was carried 
out. Reburial Site 5 was used for training the data because 
of its closer position to the beginning of the fibre optic cable, 
thus giving it a better SNR. The data from Reburial Site 3 
was used as a validation data set since the reburial was 
similar in depth, with a section going from totally unburied 
to >1 m buried. Reburial Site 3 was located approximately 
15 km from the training data set (Reburial site 5), meaning 
it will have a slightly different environment, increasing 
robustness when testing the model. 

The data before and after the reburial at site 5 was 
extracted and analysed in depth. This led to the 
development of a unique set of features that accentuate the 
differences between an unburied and buried cable. The 
features were extracted by splitting the DAS data into 
single channels of acoustic data for each 1.28 meters of the 
cable.  Each of these channels were then split into multiple 
sections in time, with each section treated as an individual 
sample for feature extraction.  Each sample then 
underwent processing that involved extracting specific 
frequency and time domain features; it was found that a 
mixture produced the best model. The feature set for each 
sample was then labelled according to the cable’s burial 

Site 
no. 

Start 
location 
of the 
reburial 
site, 
relative to 
the fibre 
optic 
cable (m) 

End 
location 
of the 
reburial 
site 
relative to 
the fibre 
optic 
cable (m) 

Start time 
of reburial 
activity 
(UTC) 

End time 
of reburial 
activity 
(UTC) 

Max 
Depth 
Range 
(m) 

1 38185 38343 19:47:00  20:40:00 0.6 

2 29872 29730 00:11:00  00:52:00 0.3 

3 24066 24205 03:56:00 04:50:00 1.0 

4 17465 17758 08:36:00 09:44:00 0.2 

5 9917 10128 13:20:00 14:07:00 1.2 
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status. All feature sets from site 5 were then fed into the 
ANN for training.  

The training was carried out using a variety of different 
parameters such as the type of loss function used, the 
activation functions in the nodes, and variation in the 
number of nodes/layers to optimise the solution.  

A sub-sample of the training data was used to test the 
performance of the model; this gives an indication of how 
the model is performing however although gives a limited 
scope in this instance due to the similarity of the data from 
the same reburial site (physical area). The result was an 
ANN binary classifier that could, for this data environment, 
accurately determine cable burial status. 

RESULTS 
Once the model was trained and the parameters set, data 
acquired from Reburial site 3 was used to validate the 
performance of the model. The data from the reburial at site 
3 was similar to site 5 in cable depth for both before and 
after either reburial however it was located approximately 
15km further down the subsea power cable, meaning it had 
different environmental conditions.  

The data from Reburial site 3 was processed and features 
extracted in the same way as for Reburial site 5. Data from 
several hours before and after the reburial were analysed 
due to the presence of a boat transporting the ROV 
impacting the predictions of the model. The model is not 
aware if the data correlates to a buried or unburied sample, 
it is up to the model to provide this classification. Figure 3 
shows the section of the reburial (Reburial 3) temporally 
and spatially, with the reburial highlighted. Also highlighted 
is the burial depth of the cable before and after the reburial. 

Once processing and feature extraction were complete, 
data was analysed by the trained ANN and a predication 
was given. Due to the spatial independence of the data an 
extra layer of analysis was then applied to give a spatial 
dependence on the surrounding classifications. The results 
of this can be seen in Figure 3.  

The results highlight some flaws with the training process, 
such as the unburied data. The cable was truly unburied in 
some cases however at some other points it may have 
been around 0.1m buried. This leads to parts of buried 
cable being falsely classified as unburied. The accuracy of 
the model is demonstrated in Table 2. With an f1-score of 
approximately 88% this model shows strong promise. 

Table 2: Precision, Recall and F1-score on the 
validation data set (Reburial site 3). 

 Precision Recall F1-Score 

Unburied 0.85 0.88 0.86 

Buried 0.91 0.89 0.90 

Avg 0.88 0.88 0.88 

 

The model provides a strong basis for future work in this 
area, demonstrating that machine learning techniques can 
be used with DAS data to enable continuous monitoring of 
events.  This also indicates that the methodologies used in 
the development of this model could be also be applied in 
other novel monitoring systems within the power cable 
industry. 

 

 
Fig.  3: Diagram showing the results of the ANN in 

predicting the burial status before and after a reburial 
(site 3) along with associated seabed burial depths of 

the cable. 

FUTURE WORK 
The performance of the ANN shown in this paper could be 
improved with the addition of more training data. With more 
data from different sites, the model’s performance would 
likely improve and be more generalisable. Additionally, 
more accurate data of the burial depth along the length of 
the cable could be used in a regression model to predict 
the actual depth of the cable, rather than just the burial 
status.  This could provide an early warning system for 
cables that are shallow. 

With recent improvements within the machine learning 
community, artificial intelligence has become more 
accessible and applicable to a wide variety of problems.  
These provide unique and powerful solutions to problems 
that were otherwise extremely difficult or impossible to 
solve. Using this technology for automatic detection will be 
a crucial factor in developing cutting edge systems in the 
sub-sea power market. 
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GLOSSARY 
DAS: Distributed Acoustic Sensor 
ROV: Remote Operated Vehicle 
ANN: Artificial Neural Network  
FO: Fibre Optic 
SNR: Signal to Noise Ratio 
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